Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sensors (Basel) ; 23(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36991807

RESUMO

It is crucial for an autonomous vehicle to predict cyclist behavior before decision-making. When a cyclist is on real traffic roads, his or her body orientation indicates the current moving directions, and his or her head orientation indicates his or her intention for checking the road situation before making next movement. Therefore, estimating the orientation of cyclist's body and head is an important factor of cyclist behavior prediction for autonomous driving. This research proposes to estimate cyclist orientation including both body and head orientation using deep neural network with the data from Light Detection and Ranging (LiDAR) sensor. In this research, two different methods are proposed for cyclist orientation estimation. The first method uses 2D images to represent the reflectivity, ambient and range information collected by LiDAR sensor. At the same time, the second method uses 3D point cloud data to represent the information collected from LiDAR sensor. The two proposed methods adopt a model ResNet50, which is a 50-layer convolutional neural network, for orientation classification. Hence, the performances of two methods are compared to achieve the most effective usage of LiDAR sensor data in cyclist orientation estimation. This research developed a cyclist dataset, which includes multiple cyclists with different body and head orientations. The experimental results showed that a model that uses 3D point cloud data has better performance for cyclist orientation estimation compared to the model that uses 2D images. Moreover, in the 3D point cloud data-based method, using reflectivity information has a more accurate estimation result than using ambient information.

3.
Sensors (Basel) ; 22(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080991

RESUMO

Smart health applications have received significant attention in recent years. Novel applications hold significant promise to overcome many of the inconveniences faced by persons with disabilities throughout daily living. For people with blindness and low vision (BLV), environmental perception is compromised, creating myriad difficulties. Precise localization is still a gap in the field and is critical to safe navigation. Conventional GNSS positioning cannot provide satisfactory performance in urban canyons. 3D mapping-aided (3DMA) GNSS may serve as an urban GNSS solution, since the availability of 3D city models has widely increased. As a result, this study developed a real-time 3DMA GNSS-positioning system based on state-of-the-art 3DMA GNSS algorithms. Shadow matching was integrated with likelihood-based ranging 3DMA GNSS, generating positioning hypothesis candidates. To increase robustness, the 3DMA GNSS solution was then optimized with Doppler measurements using factor graph optimization (FGO) in a loosely-coupled fashion. This study also evaluated positioning performance using an advanced wearable system's recorded data in New York City. The real-time forward-processed FGO can provide a root-mean-square error (RMSE) of about 21 m. The RMSE drops to 16 m when the data is post-processed with FGO in a combined direction. Overall results show that the proposed loosely-coupled 3DMA FGO algorithm can provide a better and more robust positioning performance for the multi-sensor integration approach used by this wearable for persons with BLV.


Assuntos
Sistemas de Informação Geográfica , Registros , Cegueira , Coleta de Dados , Humanos , Funções Verossimilhança , New York
4.
Front Psychiatry ; 13: 803661, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308887

RESUMO

Introduction: Movement disorders have been suggested to be a cardinal component of schizophrenia. With increased research interests in this area, instrumental measures are needed. This study was to examine if the motion capture system was reliable in measuring hand and facial bradykinesia and dyskinesia and more sensitive to detecting movement differences between schizophrenia patients and healthy people than traditional rating scales. Methods: Sixteen schizophrenia patients and 20 control subjects were recruited. Hand and facial bradykinesia and dyskinesia were measured using the motion capture system and rated using the Extrapyramidal Symptom Rating Scale and the Abnormal Involuntary Movement Scale. Results: The system showed strong test-retest reliability and generated larger effect sizes of group differences than did the rating scales. Conclusions: The results may support researchers and clinical practitioners to apply the system to sensitively measuring the hand and facial movement symptoms in schizophrenia patients, which contributes to gaining a deep understanding of movement issues in schizophrenia.

5.
Sensors (Basel) ; 21(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577344

RESUMO

Accurate smartphone-based outdoor localization systems in deep urban canyons are increasingly needed for various IoT applications. As smart cities have developed, building information modeling (BIM) has become widely available. This article, for the first time, presents a semantic Visual Positioning System (VPS) for accurate and robust position estimation in urban canyons where the global navigation satellite system (GNSS) tends to fail. In the offline stage, a material segmented BIM is used to generate segmented images. In the online stage, an image is taken with a smartphone camera that provides textual information about the surrounding environment. The approach utilizes computer vision algorithms to segment between the different types of material class identified in the smartphone image. A semantic VPS method is then used to match the segmented generated images with the segmented smartphone image. Each generated image contains position information in terms of latitude, longitude, altitude, yaw, pitch, and roll. The candidate with the maximum likelihood is regarded as the precise position of the user. The positioning result achieved an accuracy of 2.0 m among high-rise buildings on a street, 5.5 m in a dense foliage environment, and 15.7 m in an alleyway. This represents an improvement in positioning of 45% compared to the current state-of-the-art method. The estimation of yaw achieved accuracy of 2.3°, an eight-fold improvement compared to the smartphone IMU.


Assuntos
Pedestres , Smartphone , Algoritmos , Cidades , Humanos , Semântica
6.
Sensors (Basel) ; 20(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825673

RESUMO

3D-mapping-aided (3DMA) global navigation satellite system (GNSS) positioning that improves positioning performance in dense urban areas has been under development in recent years, but it still faces many challenges. This paper details a new algorithm that explores the potential of using building boundaries for positioning and heading estimation. Rather than applying complex simulations to analyze and correct signal reflections by buildings, the approach utilizes a convolutional neural network to differentiate between the sky and building in a sky-pointing fisheye image. A new skymask matching algorithm is then proposed to match the segmented fisheye images with skymasks generated from a 3D building model. Each matched skymask holds a latitude, longitude coordinate and heading angle to determine the precise location of the fisheye image. The results are then compared with the smartphone GNSS and advanced 3DMA GNSS positioning methods. The proposed method provides degree-level heading accuracy, and improved positioning accuracy similar to other advanced 3DMA GNSS positioning methods in a rich urban environment.

7.
Sensors (Basel) ; 19(18)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527422

RESUMO

Spoofing can seriously threaten the use of the Global Positioning System (GPS) in critical applications such as positioning and navigation of autonomous vehicles. Research into spoofing generation will contribute to assessment of the threat of possible spoofing attacks and help in the development of anti-spoofing methods. However, the recent commercial off-the-shelf (COTS) spoofing generators are expensive and the technology implementation is complicated. To address the above problem and promote the GPS safety-critical applications, a spoofing generator using a vector tracking-based software-defined receiver is proposed in this contribution. The spoofing generator aims to modify the raw signals by cancelling the actual signal component and adding the spoofing signal component. The connections between the spreading code and carrier, and the states of the victim receiver are established through vector tracking. The actual signal can be predicted effectively, and the spoofing signal will be generated with the spoofing trajectory at the same time. The experimental test results show that the spoofing attack signal can effectively mislead the victim receiver to the designed trajectory. Neither the tracking channels nor the positioning observations have abnormal changes during this processing period. The recent anti-spoofing methods cannot detect this internal spoofing easily. The proposed spoofing generator can cover all open-sky satellites with a high quality of concealment. With the superiority of programmability and diversity, it is believed that the proposed method based on an open source software-defined receiver has a great value for anti-spoofing research of different GNSS signals.

8.
Sensors (Basel) ; 18(11)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441784

RESUMO

Robust and lane-level positioning is essential for autonomous vehicles. As an irreplaceable sensor, Light detection and ranging (LiDAR) can provide continuous and high-frequency pose estimation by means of mapping, on condition that enough environment features are available. The error of mapping can accumulate over time. Therefore, LiDAR is usually integrated with other sensors. In diverse urban scenarios, the environment feature availability relies heavily on the traffic (moving and static objects) and the degree of urbanization. Common LiDAR-based simultaneous localization and mapping (SLAM) demonstrations tend to be studied in light traffic and less urbanized area. However, its performance can be severely challenged in deep urbanized cities, such as Hong Kong, Tokyo, and New York with dense traffic and tall buildings. This paper proposes to analyze the performance of standalone NDT-based graph SLAM and its reliability estimation in diverse urban scenarios to further evaluate the relationship between the performance of LiDAR-based SLAM and scenario conditions. The normal distribution transform (NDT) is employed to calculate the transformation between frames of point clouds. Then, the LiDAR odometry is performed based on the calculated continuous transformation. The state-of-the-art graph-based optimization is used to integrate the LiDAR odometry measurements to implement optimization. The 3D building models are generated and the definition of the degree of urbanization based on Skyplot is proposed. Experiments are implemented in different scenarios with different degrees of urbanization and traffic conditions. The results show that the performance of the LiDAR-based SLAM using NDT is strongly related to the traffic condition and degree of urbanization. The best performance is achieved in the sparse area with normal traffic and the worse performance is obtained in dense urban area with 3D positioning error (summation of horizontal and vertical) gradients of 0.024 m/s and 0.189 m/s, respectively. The analyzed results can be a comprehensive benchmark for evaluating the performance of standalone NDT-based graph SLAM in diverse scenarios which is significant for multi-sensor fusion of autonomous vehicle.

9.
Sensors (Basel) ; 15(12): 30199-220, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26633420

RESUMO

This research proposes an accurate vehicular positioning system which can achieve lane-level performance in urban canyons. Multiple passive sensors, which include Global Navigation Satellite System (GNSS) receivers, onboard cameras and inertial sensors, are integrated in the proposed system. As the main source for the localization, the GNSS technique suffers from Non-Line-Of-Sight (NLOS) propagation and multipath effects in urban canyons. This paper proposes to employ a novel GNSS positioning technique in the integration. The employed GNSS technique reduces the multipath and NLOS effects by using the 3D building map. In addition, the inertial sensor can describe the vehicle motion, but has a drift problem as time increases. This paper develops vision-based lane detection, which is firstly used for controlling the drift of the inertial sensor. Moreover, the lane keeping and changing behaviors are extracted from the lane detection function, and further reduce the lateral positioning error in the proposed localization system. We evaluate the integrated localization system in the challenging city urban scenario. The experiments demonstrate the proposed method has sub-meter accuracy with respect to mean positioning error.

10.
Sensors (Basel) ; 15(7): 17329-49, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26193278

RESUMO

Currently, global navigation satellite system (GNSS) receivers can provide accurate and reliable positioning service in open-field areas. However, their performance in the downtown areas of cities is still affected by the multipath and none-line-of-sight (NLOS) receptions. This paper proposes a new positioning method using 3D building models and the receiver autonomous integrity monitoring (RAIM) satellite selection method to achieve satisfactory positioning performance in urban area. The 3D building model uses a ray-tracing technique to simulate the line-of-sight (LOS) and NLOS signal travel distance, which is well-known as pseudorange, between the satellite and receiver. The proposed RAIM fault detection and exclusion (FDE) is able to compare the similarity between the raw pseudorange measurement and the simulated pseudorange. The measurement of the satellite will be excluded if the simulated and raw pseudoranges are inconsistent. Because of the assumption of the single reflection in the ray-tracing technique, an inconsistent case indicates it is a double or multiple reflected NLOS signal. According to the experimental results, the RAIM satellite selection technique can reduce by about 8.4% and 36.2% the positioning solutions with large errors (solutions estimated on the wrong side of the road) for the 3D building model method in the middle and deep urban canyon environment, respectively.

11.
Sensors (Basel) ; 10(4): 2957-74, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22319282

RESUMO

In order to provide the seamless navigation and positioning services for indoor environments, an indoor location based service (LBS) test bed is developed to integrate the indoor positioning system and the indoor three-dimensional (3D) geographic information system (GIS). A wireless sensor network (WSN) is used in the developed indoor positioning system. Considering the power consumption, in this paper the ZigBee radio is used as the wireless protocol, and the received signal strength (RSS) fingerprinting positioning method is applied as the primary indoor positioning algorithm. The matching processes of the user location include the nearest neighbor (NN) algorithm, the K-weighted nearest neighbors (KWNN) algorithm, and the probabilistic approach. To enhance the positioning accuracy for the dynamic user, the particle filter is used to improve the positioning performance. As part of this research, a 3D indoor GIS is developed to be used with the indoor positioning system. This involved using the computer-aided design (CAD) software and the virtual reality markup language (VRML) to implement a prototype indoor LBS test bed. Thus, a rapid and practical procedure for constructing a 3D indoor GIS is proposed, and this GIS is easy to update and maintenance for users. The building of the Department of Aeronautics and Astronautics at National Cheng Kung University in Taiwan is used as an example to assess the performance of various algorithms for the indoor positioning system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...